
NASA / TM-1998-206923

A PVS Graph Theory Library

Ricky W. Butler

Langley Research Center, Hampton, Virginia

Jon A Sjogren

Air Force Office of Scientific Research, Washington, DC

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

February 1998

Available from the following:

NASA Center for AeroSpace Information (CASI)

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934
(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171
(703) 487-4650

Abstract

This pal)or documents the NASA Langley PVS graph theory library. The library

provides fimdanmntal definitions fi)r graphs, subgraphs, walks, paths, subgraphs gen(w-

ated by walks, trees, cycles, degree, separating sets, aim four notions of commcl_,dness.

Theorems provided include Ramsey's and Menger's and tim equivalence of all fimr
notiolis of connectedness.

Contents

1 Introduction

2 Definition of a Graph

3 Graph Operations

4 Graph Degree

5 Subgraphs

6 Walks and Paths

7 Connected Graphs

8 Circuits

9 Trees

10 Ramsey's Theorem

11 Menger's Theorem

12 PVS Theories

13 Concluding Remarks

A APPENDIX: Other Supporting Theories

A.1 Gral)h Inductions

A.2 Subgrat)hs G(_nerated From Walks

A.3 Maximmn Sul)grat)hs

A.4 Minimmn Walks

A.5 Abstra(:t Min an(t Max Thoori(_s

2

2

5

6

7

8

13

14

15

15

16

18

20

2O

2O

21

21

22

23

1 Introduction

This paper (l<)cuments the NASA Langley PVS grat)h theory lit)rary. The library develot)s

the fundanmntal concepts and properties of finite graphs.

2 Definition of a Graph

Tile standard mathematit:al definition of a graph is that it is an ordered pair of sets (S",E)

sut:h that E ix a subset of the ordered pairs 1)airs of V. TyI)ically V and E are assunwd to l)e

finite though soInetimes infinite grat)hs are treated as well. The NASA library is restricted

t() finite graI)hs only. The set \" is called the vertices of the grat)h and the set E is called the

edges of the graI)h.

Although PVS (tireetly sul)I)orts ordered pairs, we have chosei1 the PVS re(:or(t stru(:ture

to define a graph. The advantage of the record structure ix that it provides naines tbr the

vertex and edge sets rather than proj_l and pro j_2. For eificieimy reasons, it is I)referable

to define a grat)h in PVS in two stet)s. We begin with the (lefinition of a pregraph:

pregraph: TYPE = [# vert : finite_set[T],

edges: finite_set [doubleton[T]] #]

A pregraph ix a structured tyi)e with two (:oml)onents: vert an(1 edges. The vert componeilt

is a finite set over an arbitrary tyt)e T. This represents the vertices of the graph. The edges

('omt)onent ix a finite set of (h)ubletons (i.e. sets with exactly two nwmbers) of T. Thus, an

edge is defined by designating its two en(1 vertices. The tyl)e finite_set ix defined in the

PVS finite sets library. It is a subtype of the type set which ix defined in the PVS prelude
as follows:

sets [T: TYPE]: THEORY

BEGIN

set: TYPE = [T -> bool]

x, y: VAR T

a, b, c: VAR set

p: VAR [T -> bool]

member(x, a): bool = a(x)

emptyset: set = x I false

subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

union(a, b): set = x I member(x, a) OR member(x, b)

intersection(a, b): set = x I member(x, a) AND member(x, b)

END sets

A set is just a boolean-valued function of the element tyl)e, i.e., a flmction from T int<) bool.

In PVS this ix written as [T -> bool]. If x is a lllein])er of a set S, the expression S(x)
evaluates to true, otherwise it. evahmtes to false.

Finite sets are defined as follows:

S: VAR set|T]

is_finite(S): bool = (EXISTS (N: nat, f: [(S) -> below|N]]): injectiveT(f))

finite_set: TYPE = { S I is_finite(S) } CONTAINING emptyset[T]

Thus finite sets are sets which can I)e mapped ()nt() O..N for some N. The cardinality function

card is defined as follows:

in]_set (S) : (nonempty? [nat]) =

{ n I EXISTS (f : [(S)->below[n]]) : in]ective?(f) }

card(S): nat = min(inj_set(S))

Allofthestandardproperties about card haw, beenproved and areavailable:

card_union : THEOREM card(union(A,B)) = card(A) + card(B) -

card(intersection(A,B))

card add : THEOREM card(add(x,S)) = card(S) +

IF S(x) THEN 0 ELSE 1ENDIF

card remove : THEOREM card(remove(x,S)) = card(S) -

IF S(x) THEN 1 ELSE 0 ENDIF

: THEOREM subset?(A,B) IMPLIES card(A) <= card(B)

: THEOREM card(emptyset[T]) = 0

= 1

card_subset

card_emptyset

card_singleton: THEOREM card(singleton(x))

Now we are ready to define a graph as folh)ws:

graph: TYPE = {g: pregraph I (FORALL (e: doubleton[T]): edges(g)(e) IMPLIES
(FORALL (x: T): e(x) IMPLIES vert(g)(x)))

A graph is a pregraph where the edges set contains (h)ul)leton sets with elemenls restricted

to the vert set. The doubleton tyl)e is defined as folh)ws:

doubletons[T: TYPE]: THEORY

BEGIN

x,y,z: VAR T

dbl(x,y): set|T] = {t: T I t = x OR t = y}

3

S: VAR set [T]

doubleton?(S): bool -- (EXISTS x,y:

doubleton: TYPE = {S [EXISTS x,y:

END doubletons

For exaniple, suppose the base type T is defined as follows:

T: TYPE = {a,b,c,d,e,f,g}

Then the following pregraph is also a graph:

(# vert := {a,b,c},

edges := { {a,b}, {b,c} } #)

whereas

(# vert

edges

:= {a,b,c},

:= { {a,b}, {b,d}, {a,g} } #)

is a pregraph |)ut is not a graph 1

Tile size of a graph is defined as follows:

size(G) : nat = card[T] (vert(G))

A singleton graph with one vertex x (i.e. size

function:

singleton_graph(v): graph = (# vert

edges

For convenience we define a number of predicates:

edge? (G) (x , y) : bool = x /= y AND edges(G)(dbl[T](x,y))

empty?(G): bool = empty?(vert(G))

singleton?(G): bool = (size(G) = i)

isolated? (G) : bool = empty? (edges (G))

x /= y AND S = dbl(x,y))

x /= y AND S = dbl(x,y)}

IS 1) can be constructed using the following

#)

:= singleton[T] (v),

:= emptyset [doubleton [T]]

The net result is that we have the fi)llowing:

I PVS does not allow { .. } as set constructors. These must be constructed in PVS using LAMBDA

ext)ressions or through use of the fuilctions add, emptyset, etc.

vert (G)

edges(G)

edge?(G)(x,y)

empty?(G)

singleton?(G)

isolated?(G)

vert, ices of graph G (a finite set of T)

edges of a gi'aph G (a finite set of (Ioul)h,t.ons t ak('n fl'om

vert (G))

true IFF there is an edge between vertices x and y

true IFF the grat)h G has IIO vertices

true IFF gral)h G has only 1 vmt('x

true IFF graph G has no edges

The tblh)wing us('ful hqnlnas are t)rovich'(l:

x,y,v: VAR T

e: VAR doubleton[T]

G: var graph

edge?_comm : LEMMA edge?(G)(y, x) IMPLIES edge?(G)(x, y)

edge_has_2_verts : LEMMA x /= v AND e(x) AND e(v) IMPLIES e = dbl(x,v)

edge_in_card_gt_l : LEMMA edges(G)(e) IMPLIES card(vert(G)) > 1

not_singleton_2_vert : LEMMA NOT empty?(G) AND NOT singleton?(G)

IMPLIES (EXISTS (x,y: T): x /= y AND

vert(G)(x) AND vert(G)(y))

These (l(,finit.ions an(I hqnmas are lo('at(,(l in the graphs th(,ory.

3 Graph Operations

Th(' theory graph_ops defines th(' following ot)(uati(ms Oil a gral)h:

union(Gi,G2)

del_vert (G ,v)

del_edge(e,G)

(-r(,at,('s a graI)h that is a union of GI aim G2

r(ml()ves vert(_x v and all adjac(mt (,(lges to v from th(' grat)h

G

creat(,s sul)gral)h with edge e remow'd fl'om G

These ()t)erations at'(, defined as fi)llows:

union(GI,G2): graph[T] = (# vert := union(vert(Gl),vert(G2)),

edges := union(edges(Gl),edges(G2)) #)

del_vert(G: graph[T], v: T): graph[T] =

(# vert := remove[T](v,vert(G)),

edges := e I edges(G)(e) AND NOT e(v) #)

del_edge(G,e): graph[T] = G WITH [edges := remove(e,edges(G))]

The fi)lh)wing is a partial list of tim l)I'Ol)(wties that have t)e(m I)rov('(l:

del_vert_still_in : LEMMA FORALL (x: (vert(G))):

x /= v IMPLIES vert(del_vert(G, v))(x)

size_del_vert LEMMA FORALL (v: (vert(G))):

size(del_vert(G,v)) = size(G) - I

edge_in_del_vert LEMMA (edges(G)(e) AND N0T e(v)) IMPLIES

edges(del_vert(G,v))(e)

del_vert_comm LEMMA del_vert(del_vert(G, x), v) =

del_vert(del_vert(G, v), x)

del_edge_lem3 : LEMMA edges(G)(e2) AND e2 /= e IMPLIES

edges(del_edge(G,e))(e2)

vert_del_edge : LEMMA vert(del_edge(G,e)) = vert(G)

del_vert_edge_comm : LEMMA del_vert(del_edge(G, e), v) =

del_edge(del_vert(G, v), e)

4 Graph Degree

The theory graph_deg develops the (,oncel_t of degree of a vertex. The following functions
are defined:

incident_edges (v, G) returns set of edges attached to vertex v in graph G

deg(v,G) Immlmr of edges attached to vertex v in graph G

ForInally they are specified as follows:

v: VAR T

G,GS : VAR graph [T]

incident_edges (v, G) : f inite_set [doubleton [T]]

= {e: doubleton[T]] edges(G)(e) AND e(v) }

deg(v,G): nat = card(incident_edges(v,G))

The following useful properties are proved

deg_del_edge : LEMMA e = dbl(x,y) AND edges(G)(e) IMPLIES

deg(y, G) = deg(y, del_edge(G, e)) + i

deg_edge_exists : LEMMA deg(v,G) > 0 IMPLIES

(EXISTS e: e(v) AND edges(G)(e))

6

deg_to_card : LEMMA deg(v,G) > 0 IMPLIES size(G) >= 2

del_vert_deg_O : LEMMA deg(v,G) = 0 IMPLIES edges(del_vert(G,v)) = edges(G)

deg_del_vert : LEMMA x /= v AND edges(G)(dbl[T] (x, v))

IMPLIES deg(v, del_vert(G, x)) =

deg(v, G) - I

del_vert_not_incident: LEMMA x /= v AND NOT edges(G)(dbl[T](x, v)) IMPLIES

deg(x, del_vert(G, v)) = deg(x, G)

singleton_deg: LEMMA singleton?(G) IMPLIES deg(v, G) = 0

5 Subgraphs

The subgral)h r(qation is defined as a l)r('dicat(' nam('d subgraph?:

GI,G2: VAR graph[T]

subgraph?(GI,G2): bool = subset?(vert(Gl),vert(G2)) AND

subset? (edges (GI), edges (G2))

Th(' subgrat)h type is (lefined using this t)redicat(':

Subgraph(G: graph|T|): TYPE = { S: graph|T| I subgraph?(S,G) }

The sul)gral)h g(merat('(l t)y a vertex set is defined as folh)ws:

i: VAR T

e: VAR doubleton[T]

subgraph(G, V): Subgraph(G) =

(G WITH [vert := {i [vert(G)(i) AND V(i) },

edges := {e [edges(G)(e) AND

(FORALL (x: T): e(x) IMPLIES V(x)) }])

The fl)llowing prol)ertieshav(,be(mt)rove(l:

finite_vert_subset : LEMMA is_finite(LAMBDA (i:T): vert(g)(i) AND V(i))

subgraph_vert_sub : LEMMA subset?(V,vert(G)) IMPLIES

vert(subgraph(G,V)) = V

subgraph_lem : LEMMA subgraph?(subgraph(G,V),G)

SS: VAR graph[T]

subgraph_smaller : LEMMA subgraph?(SS, G) IMPLIES

size(SS) <= size(G)

These definitions and lennnas are h,cated in the subgraphs theory.

6 Walks and Paths

Walks arc defined using finite sequences which are defined ill the seq_def theory:

seq_def[T: TYPE]: THEORY

BEGIN

finite_seq: TYPE = [# i: nat, seq: [below[l] -> T] #]

END

\Ve begin by defining a prewalk as tbllows:

prewalk: TYPE = {w: finite_seq[T] [l(w) > 0}

where, as])efore, T is the base type of vertices. A prewalk is a finite se(luetl('e of vertic(_s.

Thus, if we make the de('laration:

w: VAR prewalk

1 (w) is the length of the prewalk and seq(w) (i) is the ith element in the sequence. Prewalks

are contrained to be greater than 1 in length. We have used the PVS conversion mechanism,

so that w(±) can be written instead of seq(w) (i). A walk is then defined as follows:

s,ps,ww: VAR prewalk

verts_in?(G,s): bool = (FORALL (i: below(l(s))): vert(G)(seq(s)(i)))

walk?(G,ps): bool = verts_in?(G,ps) AND

(FORALL n: n < l(ps) - 1 IMPLIES

edge? (G) (ps (n) ,ps (n+l)))

Seq(G) : TYPE = {w: prewalk I verts_in?(G,w)}

Walk(G): TYPE = {w: prewalk I walk?(G,w)}

8

A walk is just a prewalk where all of the vertices are in the graph and there is all edge

between each ('OllS(_(:lltive element of the Seqll(,ll(:(,. The drl)end(mt type Walk (G) defines the

doinain (or type) of all walks in a graph G. The del_mldrnt type' Seq(G) detinrs the domain

(or type) of all prewalks in a particular graph G.

The predicates from? and walk_from? identity' sequences and walks from one particular

vertex to allothPl'.

from?(ps,u,v): bool = seq(ps)(O) = u AND seq(ps)(l(ps) - i) = v

walk_from?(G,ps,u,v): bool =

seq(ps)(O) = u AND seq(ps)(l(ps) - 1) = v AND walk?(G,ps)

The flmction verts_of returns the set of vertices lhat are in a walk:

verts_of(ww: prewalk): finite_set[T] =

{t: T I (EXISTS (i: below(l(ww))): ww(i) = t)}

Similarly, the function edges_of returns the set of edges that arc' in a walk:

edges_of(ww): finite_set[doubleton[T]] = {e: doubleton[T] l

EXISTS (i: below(l(ww)-l)): e = dbl(ww(i),ww(i+l)) I

Below are listed some of the proved t)roI)rrties about walks:

G,GG: VAR graph[T]

x,u,v: VAR T

i,j,n: VAR nat

ps: VAR prewalk

verts_in?_concat: LEMMA FORALL (sl,s2: Seq(G)): verts_in?(G,sl o s2)

verts_in?_caret : LEMMA FORALL (j: below(l(ps))): i <= j IMPLIES

verts_in?(G,ps) IMPLIES verts_in?(G,ps^(i,j))

vert_seq_lem : LEMMA FORALL (w: Seq(G)): n < l(w) IMPLIES vert(G)(w(n))

verts_of_subset : LEMMA FORALL (w: Seq(G)): subset?(verts_of(w),vert(G))

edges_of_subset : LEMMA walk?(G,ps) IMPLIES subset?(edges_of(ps),edges(G))

walk_verts_in : LEMMA walk?(G,ps) IMPLIES verts_in?(G,ps)

walk_from_vert : LEMMA FORALL (w: prewalk,vl,v2:T):

9

walk_from?(G,w,vl,v2) IMPLIES
vert(G)(vl) ANDvert(G)(v2)

walk_edge_in : LEMMAwalk?(G,ps) AND
subset?(edges_of(ps),edges(GG))AND
subset?(verts_of(ps),vert(GG))

IMPLIESwalk?(GG,ps)

The walks theory also proves some useflfl operators fin walks:

gen_seql(G,u)

gen_seq2(G,u,v)

trunci(p)

addl(p,v)

rev(p)

o

^(m,n)

create a prewalk of length 1 consisting of a single vertex u

create a prewalk of length 2 t'mm u to v

return a prewalk equal to p except the last w_rtex has been I'emow_d

return a prewalk equal to p except the vertex v has been added

l'eturn a finite sequence that is the reverse of p

concatenates two finite Se(lllelices

returns a finite sequence fl'om the m .. n elements of a se-

quence. For exainple if p = v0 -> vl -> v2 -> v3 -> v4, then

p^(1,2) = vl -> v2.

These are defined fimmally as follows:

gen_seql(G, (u: (vert(G)))): Seq(G) =

(# i := i, seq := (LAMBDA (i: below(l)): u) #)

gen_seq2(G, (u,v: (vert(G)))): Seq(G) =

(# 1 := 2,

seq := (LAMBDA (i: below(2)):

IF i = 0 THEN u ELSE v ENDIF) #)

Longprewalk: TYPE = {ps: prewalk I l(ps) >= 2}

truncl(p: Longprewalk): prewalk = p'(O,l(p)-2)

addl(ww,x): prewalk = (# 1 := l(ww) + i,

seq := (LAMBDA (ii: below(l(ww) + 1)):

IF ii < l(ww) THEN seq(ww)(ii) ELSE x ENDIF)

#)

fs, fsl, fs2, fs3: VAR finite_seq

m, n: VAR nat

o(fsl, fs2): finite_seq =

LET ii = l(fsl),

isum = ii + l(fs2)

IN (# 1 := isum,

seq := (LAMBDA (n:below[isum]):

10

IF n < ii

THEN seq(fsl)(n)

ELSE seq(fs2)(n-ll)

ENDIF) #);

emptyarr(x: below[O]): T

emptyseq: fin_seq(O) = (# I := O, seq := emptyarr #) ;

p: VAR [nat, nat] ;

^(fs: finite_seq, (p: [nat, below(l(fs))])):

fin_seq(IF proj_l(p) > proj_2(p) THEN 0

ELSE proj_2(p)-proj_l(p)+l ENDIF) =

LET (m, n) = p

IN IF m > n

THEN emptyseq

ELSE (# 1 := n-m+l,

seq := (LAMBDA (x: below[n-m+l]): seq(fs)(x + m)) #)

ENDIF ;

rev(fs): finite_seq = (# i := l(fs),

seq := (LAMBDA (i: below(l(fs))): seq(fs)(l(fs)-l-i))

#)

The fi)llowing is a 1)artiallist ofthet)rov_ql l)rot)(_rties about walks:

gen seql is walk: LEMMA vert(G)(x) IMPLIES walk?(G,gen seql(G,x))

edge to_walk : LEMMA u /= v AND edges(G)(edg[T](u, v)) IMPLIES

walk?(G,gen seq2(G,u,v))

walk?_addl : LEMMA walk?(G,ww) AND vert(G)(x)

AND edge?(G)(seq(ww)(l(ww)-l),x)

IMPLIES walk?(G,addl(ww,x))

walk?_rev : LEMMA walk?(G,ps) IMPLIES walk?(G,rev(ps))

walk?_caret : LEMMA i <= j AND j < l(ps) AND walk?(G,ps)

IMPLIES walk?(G,ps^(i,j))

yt: VAR T

pl,p2: VAR prewalk

11

walk_merge: LEMMA walk_from?(G, pl, v, yt) AND

walk_from?(G, p2, u, yt)

IMPLIES

(EXISTS (p: prewalk): walk_from?(G, p, u, v))

A path is a walk that does not en(:ounter the same vertex more than once. The predicate

path? identifies paths:

ps: VAR prewalk

path?(G,ps): bool = walk?(G,ps) AND (FORALL (i,3: below(l(ps))):

i /= j IMPLIES ps(i) /= ps(j))

Similarly the predicate path from? identifies l)aths from vertex s to t:

path from?(G,ps,s,t): bool = path?(G,ps) AND from?(ps,s,t)

Corresl)onding dependent types are defined:

Path(G): TYPE = {p: prewalk I path?(G,p)}

Path_from(G,s,t): TYPE = {p: prewalk I path_from?(G,p,s,t) }

The following is a partial list of proven properties:

G: VAR graph[T]

x,y,s,t: VAR T

i,j: VAR nat

p,ps: VAR prewalk

path?_caret : LEMMA i <= j AND j < l(ps) AND path?(G,ps)

IMPLIES path?(G,ps^(i,j))

path_from?_caret: LEMMA i <= j AND j < l(ps) AND path_from?(G, ps, s, t)

IMPLIES path_from?(G, ps^(i, 3),seq(ps)(i),seq(ps)(j))

path?_rev LEMMA path?(G,ps) IMPLIES path?(G,rev(ps))

path?_gen_seq2 :

path?_addl

LEMMA vert(G)(x) AND vert(G)(y) AND

edge?(G)(x,y) IMPLIES path?(G,gen_seq2(G,x,y))

: LEMMA path?(G,p) AND vert(G)(x)

AND edge?(G)(seq(p)(l(p)-1),x)

12

ANDNOTverts_of(p)(x)
IMPLIESpath?(G,addl(p,x))

path?_trunci : LEMMA path?(G,p) AND l(p) > i IMPLIES

path_from?(G,truncl(p),seq(p)(O),seq(p)(l(p)-2))

These definitions and lennnas about paths are located in the paths theory.

7 Connected Graphs

The library provides four different definitions fl)r connectedn('ss of a graph and l)rovides

proofs that they are are equivalent. These are naInod connected, path_connected,

piece_connected, and complected:

G,GI,G2,HI,H2: VAR graph[T]

connected?(G): RECURSIVE bool = singleton?(G) 0R

(EXISTS (v: (vert(G))): deg(v,G) > 0

AND connected?(del_vert(G,v)))

MEASURE size(G)

path_connected?(G): bool = NOT empty?(G) AND

(FORALL (x,y: (vert(G))):

(EXISTS (w: Walk(G)): seq(w)(0) = x AND

seq(w)(l(w)-l) = y))

piece_connected?(G): bool = NOT empty?(G) AND

(FORALL HI,H2: G = union(HI,H2) AND

NOT empty?(Hl) AND N0T empty?(H2)

IMPLIES N0T empty?(intersection(vert(Hl),

vert(H2))))

complected?(G): bool = IF isolated?(G) THEN singleton?(G)

ELSIF (EXISTS (v: (vert(G))): deg(v,G) = i) THEN

(EXISTS (x: (vert(G))): deg(x,G) = 1 AND

connected?(del_vert(G,x)))

ELSE

(EXISTS (e: (edges(G))):

connected?(del_edge(G,e)))

ENDIF

These definitions are located in the graph_conn_defs theory. The following lemmas about

equivaleilce aro located in the theory graph_connected:

graph_connected[T: TYPE] : THEORY

13

BEGIN

G: VAR graph[T]

conn_eq_path :THEOREM connected?(G) = path_connected?(G)

path_eq_piece: THEOREM path_connected?(G) = piece_connected?(G)

piece_eq_conn: THEOREM piece_connected?(G) = connected?(G)

conn_eq_complected: THEOREM connected?(G) = complected?(G)

END graph_connected

8 Circuits

A slightly non-traditional definition of circuit is used. A circuit is a walk that starts and ends

in tile same place (i.e. a pre_circuit) an(l is cyclically reduced (i.e. cyclically_reduced?).

reducible?(G: graph[T], w: Seq(G)): bool = (EXISTS (k: posnat): k <

l(w) - 1 AND w(k-l) = w(k+l))

reduced?(G: graph[T], w: Seq(G)): bool = NOT reducible?(G,w)

cyclically_reduced?(G: graph[T], w: Seq(G)): bool = l(w) > 2 AND

reduced?(G,w) AND w(1) /= w(l(w)-2)

pre_circuit?(G: graph[T], w: prewalk): bool = walk?(G,w) AND

w(0) = w(l(w)-l)

circuitT(G: graph[T], w: Seq(G)): bool = walk?(G,w) AND

cyclically_reduced?(G,w) AND

pre_circuit?(G,w)

Tile following prol)erties are proved in the circuit_deg theory:

cir_deg_G : LEMMA (EXISTS (a,b: (vert(G))): vert(G)(z) AND

a /= b AND edge?(G)(a,z) AND edge?(G)(b,z)) IMPLIES

deg(z,G) >= 2

circuit_deg : LEMMA FORALL (w: Walk(G),i: below(l(w))): circuit?(G,w)

IMPLIES deg(w(i),G from(G,w)) >= 2

14

9 Trees

Trees are defin(,(I r(,('ursiv(qy as follows:

G: VAR graph[T]

tree?(G): RECURSIVE bool = card [T] (vert (G)) = I 0R

(EXISTS (v: (vert(G))): deg(v,G) = I AND

tree? (del_vert [T] (G, v)))

MEASURE size(G)

and the Tree type is defined as follows:

Tree: TYPE = {G: graph[T] I tree?(G)}

Theflmdammltall)ropertythattre(,s havenocircuitsist)rovt,din tree_circ theory.

tree_no_circuits: THEOREM (FDRALL (w: Walk(G)): tree?(G) =>

N0T circuit?(G,w))

10 Ramsey's Theorem

This work builds upon a w_rification of this theorem by Natarajan Shankar and the paper

entitled "The Boycr-Moore Prover and Nuprl: An Experimental Comt)arison" by David

Basin and Matt Kauflnann 2.

i, j: VAR T

n, p, q, ii: VAR nat

g: VAR graph[T]

G: VAR Graph[T] % nonempty

V: VAR finite_set[T]

contains_clique(g, n): bool =

(EXISTS (C: finite_set[T]):

subset?(C,vert(g)) AND card(C) >= n AND

(FORALL i,]: i/=] AND C(i) AND C(j) IMPLIES edge?(g)(i,j)))

contains_indep(g, n): bool =

(EXISTS (D: finite_set[T]):

"CLI Technical 1Report 58, .luly 17, 1990.

15

subset?(D, vert(g)) AND card(D) >= n AND

(FORALL i, j: i/=j AND D(i) AND D(j) IMPLIES N0T edge?(g)(i, j)))

subgraph_clique: LEMMA (FORALL (V: set[T]):

contains_clique(subgraph(g, V),

IMPLIES contains_clique(g, p))

p)

subgraph_indep : LEMMA (FORALL (V: set[T]):

contains_indep(subgraph(g, V),

IMPLIES contains_indep(g, p))

p)

ramseys_theorem: THEOREM (EXISTS (n: posnat):

(FORALL (G: Graph[T]): size(G) >= n

IMPLIES (contains_clique(G, Ii) OR

contains_indep(G, 12))))

11 Menger's Theorem

To state menger's theoreln one nmst first define minimum separating sets. This is fairh"

COml)licated in a formal system. We begin with the (_oncept of a set)arating set:

G: VAR graph[T]

v,s,t: VAR T

e: VAR doubleton[T]

V: VAR finite_set[T]

del_verts(G,V): graph[T] =

(# vert := difference[T](vert(G),V),

edges := {e I edges(G)(e) AND

(FDRALL v: V(v) IMPLIES N0T e(v))} #)

separates(G,V,s,t): bool = N0T V(s) AND N0T V(t) AND

N0T (EXISTS (w: prewalk): walk_from?(del_verts(G,V),w,s,t))

In other words V separates s and t when its removal disconnects s and t. To define the

minimuln separating set, we use an abstract minimum function defined in the abstract_min

theory. The net result is that we end up with a function min_sep_set with all of the following

(lesired properties

min_sep_set(G,s,t): finite_set[T] = min[seps(G,s,t),

(LAMBDA (v: seps(G,s,t)): card(v)),

(LAMBDA (v: seps(G,s,t)): true)]

16

separable?(G,s,t): bool = (s /= t AND NOT edge?(G)(s,t))

min_sep_set_edge: LEMMA NOT separable?(G,s,t) IMPLIES

min sep_set(G,s,t) = vert(G)

min_sep_set_card: LEMMA FORALL (s,t: (vert(G))): separates(G,V,s,t)

IMPLIES card(min_sep_set(G,s,t)) <= card(V)

min_sep_set_seps: LEMMA separable?(G,s,t) IMPLIES

separates(G,min_sep set(G,s,t),s,t)

min_sep_set_vert: LEMMA separable?(G,s,t) AND min_sep_set(G,s,t)(v)

IMPLIES vert(G)(v)

ends_not_in_min_sep_set: LEMMA separable?(G,s,t) AND min_sep_set(G, s, t)(v)

IMPLIES v /= s AND v /= t

\%'(,t,hen (|(,finesep_num as f'olhnv,_:

sep_num(G,s,t): nat = card(min_sep_set(G,s,t))

Noxt, w(_ define a prrdicato independent? that (tofin(,s wlmn two paths at(' ind('t)rndont:

independent?(wl,w2: prewalk): bool =

(FORALL (i,j: nat): i > 0 AND i < l(wl) - I AND

j > 0 AND j < l(w2) - I IMPLIES

seq(wl)(i) /= seq(w2)(]))

The ('on(:et)t of a set of ind(_t)(ul(hult t)aths is (h'fine(l as follows:

set_of_paths(G,s,t): TYPE = finite_set[Path_from(G,s,t)]

ind_path_set?(G,s,t,(pset: set_of_paths(G,s,t))): bool =

(FORALL (pl,p2: Path_from(G,s,t)):

pset(pl) AND pset(p2) AND pl /= p2

IMPLIES independent?(pl,p2))

In other wor(ls, a set of paths is an ind_path_set? if all pairs of l)aths in th(' set at('

in(h,t)('n(lent. \V(, can now stat(, M(ulg(w's tlmor(un in I)oth (tir(_(:tions:

easy_menger: LEMMA FORALL (ips: set_of_paths(G,s,t)):

separable?(G,s,t) AND

ind_path_set?(G,s,t,ips) IMPLIES

card(ips) <= sep_num(G,s,t)

17

hard_menger: AXIOM separable?(G,s,t) AND sep_num(G,s,t) = K AND

vert(G)(s) AND vert(G)(t)

IMPLIES

(EXISTS (ips: set_of_paths(G,s,t)):

card(ips) = K AND ind_path_set?(G,s,t,ips))

The hard direction of menger has only been formally proved for tile K = 2 case.

hard_menger: LEMMA separable?(G,s,t) AND sep_num(G,s,t) = 2 AND

vert(G)(s) AND vert(G)(t)

IMPLIES

(EXISTS (ips: set_of_paths(G,s,t)):

card(ips) = 2 AND ind_path_set?(G,s,t,ips))

12 PVS Theories

The following is a list of tim PVS theories and description:

18

abstract_min

abstract_max

circuit_deg

circuits

cycle_deg

doubletons

graphs

graph_complected

graph_conn_defs

graph_conn_piece

graph_connected

graph_path_conn

graph_piece_path

graph_deg

graph_deg_sum

graph_inductions

graph_ops

h_menger

ind_paths

max subgraphs

max_subtrees

mengscaff

meng_scaff_defs

meng_scaff_prelude

menger

min_walkreduced

min_walks

path_lems

path_ops

paths

ramsey_new

reduce_walks

sep_set_lems

sep_sets

subgraphs

subgraphs_from_walk

subtrees

tree_circ

tree_paths

trees

walk_inductions

walks

at)sti'act definition of rain

abstract definition of max

degre(' of circuits

th('orv of circuits

degree of cy('h,

theory of doubletons used for definition of edge

fimdameIltal definitiion of a graph

unusual definition of c(mnected gi'aph

de[s of piece, path, aim structural connectedness

structural (,omwcted .sup._ct l)ieve comwct('d

all connected defs are equivalent

path connected .s'up._'ct struetma] ('onnected

l)iec(' conilecte(l .'q?ll),S('t path comwcted

definition of degree

tll('orelll relatillg vertex degree anti llllIll])('r of e(lges

vertex and edge inductions tbr gral)hs

delete v('rtex and deh,)e edge operations

hard menger

definition ()f indelmndent 1)aths

maxixnal sul)gral)hs with specified l)rol)erty

maximal sul)trees with sl)ecified I)rol)erty

scaffolding for hard menger l)ro()f

s('affolding for hard menger l)roof

scaffolding for hard menger l)roof

menger's theorem

theorem that minimum walk is r(,du('('(l

minimum walk satisi_ing a I)rol)erty

some useful lemmas al)out l)aths

deleting vertex and edge ()iterations

fundamental (tefinition and 1)roperties about t)aths

Ramsey's theorem

operation to reduce a walk

l)r()perties of separating sets

definition of sel)arating sets

generation of sul)grat)hs from vertex sets

generation of sul)graphs from walks

sut)trees of a graph

theorem that tree has no cir('uits

theorem that tree has only one l)ath l)etween vertices

fundamental definition of trees

induction on length ofa walk

flmdamental definitioil and 1)rol)erties ()f walks

The PVS sl)e(:ifications are availal)le a,t:

http://atb-www.larc.nasa.gov/ftp/larc/PVS-library/.

19

13 Concluding Remarks

This paper gives a brief overview of tile NASA Langley PVS Graph Theory Library. The

library provides definitions and lemmas for graph operations such as deleting a vertex or

edge, provides definitions for vertex degree, subgraphs, minimal subgraphs, walks and I)aths,

notions of connectedness, circuit and trees. Both Ramsey's Theorenl and Menger's Theorem

are provided.

A APPENDIX: Other Supporting Theories

A.1 Graph Inductions

The graph theory library provides two basic means of performing induction on a grat)h:

indu(:tion on the number of vertices and induction Oil the numl)er of edges.

G,GG: VAR graph[T]

P : VAR pred [graph [T]]

graph_induction_vert : THEOREM (FORALL G:

(FORALL GG: size(GG) < size(G) IMPLIES P(GG))

IMPLIES P(G))

IMPLIES (FORALL G: P(G))

graph_induction_edge : THEOREM (FORALL G:

(FORALL GG: num_edges(GG) < hum_edges(G) IMPLIES P(GG))

IMPLIES P(G))

IMPLIES (FORALL G: P(G))

These theorems can be invoked using the PVS strategy INDUCT. For example

(INDUCT "G" I "graph_induction_vert")

invokes vertex induction on formula 1. They are available in theory graph_inductions.

These induction theorems were proved by rewriting with the tbllowing lemmas

size_prep : LEMMA (FORALL G : P(G)) IFF

(FORALL n, G : size(G) = n IMPLIES P(G))

num_edges_prep : LEMMA (FOKALL G : P(G)) IFF

(FORALL n, G : hum_edges(G) = n IMPLIES P(G))

which ('onverts the theorein into formulas that are universally quantified over the naturals.

The resulting fl)rmulas were then easily l)rove(t using PVS's built-in theorem for strong

induction:

2O

NAT_induction: LEMMA

(FORALL j: (FORALL k: k < j

IMPLIES (FORALL i: p(i))

IMPLIES p(k)) IMPLIES p(j))

A.2 Subgraphs Generated From Walks

Ttw graph thct)rv library 1)rt,vi(h_s a function G_from that constructs a sul)graph t)f a graph

G that COlitains tilt, vtu'tices and t,(lges of a walk w:

G_from(Ggraph[T], w: Walk(G)): Subgraph(G) = (# vert := verts_of(w),

edges := edges_of(w) #)

The following lm)pertios of G_from have betul l)rovod:

vert G from

edge?_G_from

: LEMMA FORALL (w: Walk(G), i: below(l(w))):

vert(G_from(G, w))(w(i))

: LEMMA FORALL (w: Walk(G), i: below(l(w)-l)):

edge?(G from(G, w))(w(i), w(i+l))

vert_G_from_not : LEMMA FORALL (w: Walk(G)):

subset?(vert(G_from(G, w)), vert(GG)) AND

NOT verts_of(w)(v)

IMPLIES

subset?(vert(G_from(G, w)), remove[T](v, vert(GG)))

del_vert_subgraph: LEMMA FORALL (w: Walk(G), v: (vert(GG))):

subgraph?(G_from(G, w), GG) AND

NOT verts_of(w)(v) IMPLIES

subgraph?(G_from(G, w), del_vert(GG, v))

Tiffs lemmas arc availabh _ in the theory subgraphs_from_walk.

A.3 Maximum Subgraphs

Given a graph G we say that a subgraph S is maximal with rost)ect to a t)art, icular I)rot)t'rty

P if it: is tilt, largost subgraph that satisfies tim property. Formally we write:

maximal?(G: graph[T], S: Subgraph(G),P: Gpred(G)): bool = P(S) AND

(FORALL (SS: Subgraph(G)): P(SS) IMPLIES

size(SS) <= size(S))

21

We can define a fllnction that returns tile maximum subgraph under the assumption that

there exists at least one subgraph that satisfies the predicate. Therefore this function is o1113,

defined on a subtype of P, nanmly Gpred:

G: VAR graph[T]

Gpred(G): TYPE = P: pred[graph[T]] I (EXISTS (S: graph[T]):

subgraph?(S,G) AND P(S))

\%_ now define max_subgraph as follows:

max_subgraph(G: graph[T], P: Gpred(G)): S: Subgraph(G) I maximal?(G,S,P)

The following usethlproperties of max_subgraph have beenproved:

max_subgraph_def : LEMMA FORALL (P: Gpred(G)):

maximal?(G,max_subgraph(G,P),P)

max_subgraph_in : LEMMA FORALL (P: Gpred(G)): P(max_subgraph(G,P))

max_subgraph is_max : LEMMA FORALL (P: Gpred(G)):

(FORALL (SS: Subgraph(G)): P(SS) IMPLIES

size(SS) <= size(max_subgraph(G,P)))

These definitions and lemmas are located in the theory max_subgraphs.

A similar theory for subtrees is available in the theory max_subtrees.

A.4 Minimum Walks

Given that a walk w from vertex x to vertex y exists, we sometimes need to find the shortest

walk from x to y. The theory min_walks provides a flmction min_walk_from that returns a

walk that is mininml. It is defined formally as follows:

vl,v2,x,y: VART

G: VAR graph[T]

gr_walk(vl,v2): TYPE = G: graph[T] I vert(G)(vl) AND vert(G)(v2) AND

(EXISTS (w: Seq(G)):

walk from?(G,w,vl,v2))

min_walk_from(x,y,(Gw:gr_walk(x,y))): Walk(Gw) =

min[Seq(Gw),(LAMBDA (w: Seq(Gw)): l(w)),

(LAMBDA (w: Seq(Gw)): walk_from?(Gw,w,x,y))]

The fi)llowing properties of min_walk_from have t)e(m established:

22

is_min(G,(w: Seq(G)),x,y): bool = walk?(G,w) AND

(FORALL (ww: Seq(G)): walk_from?(G,ww,x,y) IMPLIES

l(w) <= l(ww))

min_walk_def: LEMMA FORALL (Gw: gr_walk(x,y)):

walk from?(Gw,min_walk from(x,y,Gw),x,y) AND

is min(Gw, min walk_from(x,y,Gw),x,y)

min walk_in : LEMMA FORALL (Gw: gr walk(x,y)):

walk_from?(Gw,min walk from(x,y,Gw),x,y)

min_walk_is_min: LEMMA FORALL (Gw: gr_walk(x,y), ww: Seq(Gw)):

walk_from?(Gw,ww,x,y) IMPLIES

l(min walk from(x,y,Gw)) <= l(ww)

reduced?(G: graph[T], w: Seq(G)): bool =

(FORALL (k: nat): k > 0 AND k < l(w) - i IMPLIES w(k-l) /= w(k+l))

x,y: VAR T

min_walk_is_reduced: LEMMA FORALL (Gw: gr walk(x,y)):

reduced?(Gw,min_walk_from(x,y,Gw))

These lea.has are a vailal)h_ in the t h('ori(_s min_walks an(t min_walk_reduced.

A.5 Abstract Min and Max Theories

Tile need for a flm(:tion that returns th(' smallest ()r largest ol)j('('t that satisfies a t)arti('ular

l)redi(:ate arises ill many c()ntexts. For (_xample, one may need a minimal walk flom s t() t

or the maximal sul)grat)h that contains a tree. Thus. it is us('ful to d(weh)l) abstract rain and

max theories that can 1)o instantiated in inultiph_ ways t() 1)rovid(_ (tifferent inin and lnaX

flln(_tions. Such a theory must I)(' parain('teriz(_(I bv

T : TYPE

size: [T -> nat]

P: pred [T]

Formally we hay('

the tyt)e of the ()l).j(_('t for whi('h a min flmction is ime(t('d

tim "size" flm('tion t)y whi(:h ol)jects are compared

the t)r()perty that the rain flm(;tion must satis[v

abstract_min[T: TYPE, size: [T -> nat], P: pred[T]]: THEORY

alia

abstract_max[T: TYPE, size: [T -> nat] , P: pred[T]] : THEORY

23

To simplify the following discussion, only tile abstract_rain theory will be elat)orated in

detail. The abstract_max theory is conceptually identical.

In order for a minimum function to t)e defined, it is necessary that at least one ol)ject

exists that satisfies the property. Thus, the theory contains the following assuming claus(,

ASSUMING

T_ne: ASSUMPTION EXISTS (t: T): P(t)

ENDASSUMING

User's of this theory are required to prove that this assunlption hol(ts for their tyl)e T (via

PVS's TCC generatioll mechanism).

A flmction minimal? (S : T) is then (lefined as follows:

minimal?(S): bool = P(S) AND

(FORALL (SS: T): P(SS) IMPLIES size(S) <= size(SS))

Using PVS's det)endent tyt)e nlechanisnl, min is sl)e('ified by constraining it's return type to
l)etho subset oft that satisfies minimal?:

min: {S: r I minimal?(S)}

If there are multiple instances of objects that are inininlal, the theory does IIOt st)eci[v which
obje(,t is selected by min. It just states that rain will return one of the minimal ones. This

definition causes PVS to generate the following proof obligation (i.e. TCC):

min_TCCl: OBLIGATION (EXISTS (x: S: T [minimal?(S)): TRUE);

This was proved using a function min_f, de.fine.d as folh)ws:

is_one(n): bool-- (EXISTS (S: T): P(S) AND size(S) = n)

rain_f: nat = min[nag](n: nag I is_one(n))

to construct the required min function. The T_ne assumpti(m is sufficient to guaralltee that
min f is well-defined.

The following properties have been proved about rain:

min_def : LEMMAminimal?(min)

min_in : LEMMA P(min)

min_is_min: LEMMA P(SS) IMPLIES size(min) <= size(SS)

These properties are sufficient for most apl)lications.

24

FormApproved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public reporting burden for this collectionof information is estimated to average 1 hour per nssponse, including the time for reviewing i.nstructions, seamhiog existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of reformation. Send comments regarding this burden estimate or any other aspecl of this
colieclion of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Inforn_tion Operat!ons and Reports, 1215 Jefferson Da,,ns
H_ghway, Suite 1204, Adington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AND DATES COVERED

Technical Memorandum

4. TITLE AND SUBTITLE

A PVS Graph Theory Library

2. REPORT DATE

February 1998

6. AUTHOR(S)

Ricky W. Butler and Jon A. Sjogren

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/ MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 519-50-11-01

8o PERFORMING ORGANIZATION

REPORT NUMBER

L-17692

10. SPONSORING I MONITORING

AGENCY REPORT NUMBER

NASA/TM- 1998-206923

11. SUPPLEMENTARY NOTES

Butler, Ricky W.: NASA Langley Research Ctr.

Sjogren, Jon A.: Air Force Office of Scientific Research; Washington, DC

12a. DISTRIBUTION I AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category: 59
Distribution: Nonstandard

Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper documents the NASA Langley PVS graph theory library. The library provides fundamental definitions

for graphs, subgraphs, walks, paths, subgraphs generated by walks, trees, cycles, degree, separating sets, and
four notions of connectedness. Theorems provided include Ramsey's and Menger's and the equivalence of all
four notions of connectedness.

14. SUBJECTTERMS

Graphs, Formal Methods, PVS Libraries, Formal Proof

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

29

16. PRICE CODE

A03

20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescdbed by ANSI Std Z39-18
298-102

